电动车论坛
标题:
电动车控制器短路保护时间的计算方法
[打印本页]
作者:
jiangyuping
时间:
2012-6-30 09:01
标题:
电动车控制器短路保护时间的计算方法
关键字:短路保护 热阻 电源电压
议题内容:
电动车无刷电机控制器短路的工作模型
控制器在短路时MOSFET的工作状态
计算MOSFET瞬态温升的计算公式
设定短路保护时间的原则
解决方案:
温升公式:Tj = Tc + P × Rth(jc)
根据单脉冲的热阻系数确定允许的短路时间
工作温度越高短路保护时间就应该越短
1 短路模型及分析
短路模型如图1所示,其中仅画出了功率输出级的A、B两相(共三相)。Q1和Q3为A相MOSFET,Q2和Q4为B相MOSFET,所有功率MOSFET均为AOT430。L1为电机线圈,Rs为电流检测电阻。
当控制器工作时,如电机短路,则会形成如图1中所示的流经Q2,Q3的短路电流,其电流值很大,达几百安培,MOSFET的瞬态温升很大,这种情况下应及时保护,否则会使MOSFET结点温度过高而使MOSFET损坏。短路时Q3电压和电流波形如图2所示。图2a中的MOSFET能承受45us的大电流短路,而图2b中的MOSFET不能承受45us的大电流短路,当脉冲45us关断后,Vds回升,由于温度过高,仅经过10us的时间MOSFET便短路,Vds迅速下降,短路电流迅速上升。由图2我们可以看出短路时峰值电流达500A,这是由于短路时MOSFET直接将电源正负极短路,回路阻抗是导线,PCB走线及MOSFET的Rds(on)之和,其数值很小,一般为几十毫欧至几百毫欧。
2 计算合理的保护时间
在实际应用中,不同设计的控制器,其回路电感和电阻存在一定的差别以及短路时的电源电压不同,导致控制器三相输出线短路时的短路电流各不相同,所以设计者应跟据自己的实际电路和使用条件设计合理的保护时间。
短路保护时间计算步骤:
2.1 计算MOSFET短路时允许的瞬态温升
因为控制器有可能是在正常工作时突然短路,所以我们的设计应是基于正常工作时的温度来计算允许的瞬态温升。MOSFET的结点温度可由下式计算:
Tj = Tc + P × Rth(jc)
其中:
Tc:MOSFET表面温度
Tj:MOSFET结点温度
Rth(jc):结点至表面的热阻,可从元器件Date sheet中查得。
理论上MOSFET的结点温度不能超过175℃,所以电机相线短路时MOSFET允许的温升为:Trising = Tjmax - Tj = 175-109 = 66℃。
2.2 根据瞬态温升和单脉冲功率计算允许的单脉冲时的热阻
由图2可知,短路时MOSFET耗散的功率约为:
P = Vds × I = 25 × 400 = 10000W
脉冲的功率也可以通过将图二测得波形存为EXCEL格式的数据,然后通过EXCEL进行积分,从而得到比较精确的脉冲功率数据。
对于MOSFET温升计算有如下公式:
Trising = P × Zθjc × Rθjc
其中:
Rθjc------结点至表面的热阻,可从元器件Date sheet中查得。
Zθjc------热阻系数
Zθjc = Trising ÷( P × Rθjc)
Zθjc = 66 ÷ (10000 × 0.45)= 0.015
2.3 根据单脉冲的热阻系数确定允许的短路时间
由图3最下面一条曲线(单脉冲)可知,对于单脉冲来说,要想获得0.015的热阻系数,其脉冲宽度不能大于20us。
3 设计短路保护应注意的几个问题
由于不同控制器的PCB布线参数不一样,导致相线短路时回路阻抗不等,短路电流也因此不同。所以,不同设计的控制器应根据实际情况设计确当的短路保护时间。
由于应用中使用的电源电压有可能不同,也会导致短路电流的不同,同样也会影响到保护时间。
注意控制器实际工作时的可能最高温度,工作温度越高,短路保护时间就应该越短。
本文讨论的短路保护时间是指MOSFET能承受的最长短路时间。在设计短路保护电路时,应考虑硬件及软件的响应时间,以及电流保护的峰值,这些参数都会影响到最终的保护时间。因此,硬件电路设计和软件的编写致关重要。
本文讨论的短路保护时间是单次短路保护时间,短路后短时间内不能再次短路。如果设计成周期性短路保护,则短路保护时间应更短。
4 结论
短路保护在瞬间大电流时能对MOSFET提供可靠的快速保护,大大增加了控制的可靠性,减少了控制器的损坏率。
作者:
小平
时间:
2012-7-16 13:54
学习了,支持
作者:
小宝贝
时间:
2012-7-17 14:04
学习,支持哦
欢迎光临 电动车论坛 (http://cebike.com/forum/)
Powered by Discuz! X3.2