锂离子电池原理及工艺流程 一、 原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0工作原理 3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二 工艺流程 1.正负极配方 1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极) LiCoO2(10μm):93.5% 其它:6.5% 如Super-P:4.0% PVDF761:2.5% NMP(增加粘结性):固体物质的重量比约为810:1496 a)正极黏度控制6000cps(温度25转子3); b)NMP重量须适当调节,达到黏度要求为宜; c)特别注意温度湿度对黏度的影响 钴酸锂:正极活性物质,锂离子源,为电池提高锂源。 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。 导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。 非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为 2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。 PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。 非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。 NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。 正极引线:由铝箔或铝带制成。 1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极) 负极材料:94.5% Super-P:1.0% SBR:2.25% CMC:2.25% 水:固体物质的重量比为1600:1417.5 a) 负极黏度控制5000-6000cps(温度25转子3) b) 水重量需要适当调节,达到黏度要求为宜; c) 特别注意温度湿度对黏度的影响 2.正负极混料 ★ 石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造 石墨两大类。 非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径D50为20μm左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。 ★ 导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。 提高反应深度及利用率。 防止枝晶的产生。 利用导电材料的吸液能力,提高反应界面,减少极化。 (可根据石墨粒度分布选择加或不加)。 ★ 添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。 增稠剂/防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。 异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。 乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度 (异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然后选择添加哪种)。 ★水性粘合剂(SBR):将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。 小分子线性链状乳液,极易溶于水和极性溶剂。 增稠剂/防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。 ★ 负极引线:由铜箔或镍带制成。 去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。 2.1正极混料 原料的掺和: (1) 粘合剂的溶解(按标准浓度)及热处理。 (2) 钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 干粉的分散、浸湿: (1) 原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2) 分散方法对分散的影响: A、 静置法(时间长,效果差,但不损伤材料的原有结构); B、 搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。 6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热浆料容易结皮,太冷浆料的流动性将大打折扣。 稀释。将浆料调整为合适的浓度,便于涂布。 2.1.1原料的预处理 (1) 钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。 (2) 导电剂:脱水。一般用200 oC常压烘烤2小时左右。 (3) 粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。 (4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。2.1.2物料球磨 a)将LiCoO2 Super-P倒入料桶,同时加入磨球(干料:磨球=1:1),在滚瓶及上进行球磨,转速控制在60rmp以上; b)4小时结束,过筛分离出球磨; 2.1.3操作步骤 a) 将NMP倒入动力混合机(100L)至80℃,称取PVDF加入其中,开机; 参数设置:转速25±2转/分,搅拌115-125分钟; b) 接通冷却系统,将已经磨号的正极干料平均分四次加入,每次间隔28-32分钟,第三次加料视材料需要添加NMP,第四次加料后加入NMP; 动力混合机参数设置:转速为20±2转/分 c) 第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟; 动力混合机参数设置:公转为30±2转/分,自转为25±2转/分; d) 真空混合:将动力混合机接上真空,保持真空度为-0.09Mpa,搅拌30±2分钟; 动力混合机参数设置:公转为10±2分钟,自转为8±2转/分 e) 取250-300毫升浆料,使用黏度计测量黏度; 测试条件:转子号5,转速12或30rpm,温度范围25℃; f) 将正极料从动力混合机中取出进行胶体磨、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。 2.1.4注意事项 a) 完成,清理机器设备及工作环境; b) 操作机器时,需注意安全,避免砸伤头部。 2.2负极混料 2.2.1原料的预处理: (1) 石墨:A、混合,使原料均匀化,提高一致性。B、300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。 (2) 水性粘合剂:适当稀释,提高分散能力。 ★ 掺和、浸湿和分散: (1) 石墨与粘合剂溶液极性不同,不易分散。 (2) 可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。 (3) 应适当降低搅拌浓度,提高分散性。 (4) 分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。 (5) 搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。 (6) 分散原理、分散方法同正极配料中的相关内容 ★ 稀释:将浆料调整为合适的浓度,便于涂布。 |
欢迎光临 电动车论坛 (http://cebike.com/forum/) | Powered by Discuz! X3.2 |